Search results for "Mathematics - Geometric Topology"

showing 10 items of 55 documents

The proof of Birman’s conjecture on singular braid monoids

2003

Let B_n be the Artin braid group on n strings with standard generators sigma_1, ..., sigma_{n-1}, and let SB_n be the singular braid monoid with generators sigma_1^{+-1}, ..., sigma_{n-1}^{+-1}, tau_1, ..., tau_{n-1}. The desingularization map is the multiplicative homomorphism eta: SB_n --> Z[B_n] defined by eta(sigma_i^{+-1}) =_i^{+-1} and eta(tau_i) = sigma_i - sigma_i^{-1}, for 1 <= i <= n-1. The purpose of the present paper is to prove Birman's conjecture, namely, that the desingularization map eta is injective.

20F36 57M25. 57M27[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Monoid[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)01 natural sciencesBirman's conjecture[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics - Geometric TopologyMathematics::Group Theory57M25. 57M27Mathematics::Category Theory[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: MathematicsBraid0101 mathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR][MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]MathematicsConjecturedesingularization010102 general mathematicsMultiplicative functionSigmaGeometric Topology (math.GT)singular braidsInjective function010101 applied mathematicsHomomorphismGeometry and TopologyMathematics - Group TheoryGeometry & Topology
researchProduct

Spectral sequence associated with a symplectic manifold

2006

A method of computation of its terms is presented together with some stabilization results. As an application a characterization of symplectic harmonic manifolds is given and a relationship with the C-spectral sequence is indicated.

55 T05Mathematics - Geometric Topology53D05Mathematics - Symplectic GeometryFOS: MathematicsSymplectic Geometry (math.SG)Geometric Topology (math.GT)53D05; 55 T05Mathematics::Symplectic Geometry
researchProduct

Roots in the mapping class groups

2006

The purpose of this paper is the study of the roots in the mapping class groups. Let $\Sigma$ be a compact oriented surface, possibly with boundary, let $\PP$ be a finite set of punctures in the interior of $\Sigma$, and let $\MM (\Sigma, \PP)$ denote the mapping class group of $(\Sigma, \PP)$. We prove that, if $\Sigma$ is of genus 0, then each $f \in \MM (\Sigma)$ has at most one $m$-root for all $m \ge 1$. We prove that, if $\Sigma$ is of genus 1 and has non-empty boundary, then each $f \in \MM (\Sigma)$ has at most one $m$-root up to conjugation for all $m \ge 1$. We prove that, however, if $\Sigma$ is of genus $\ge 2$, then there exist $f,g \in \MM (\Sigma, \PP)$ such that $f^2=g^2$, $…

Class (set theory)Pure subgroupGeneral MathematicsBoundary (topology)SigmaGeometric Topology (math.GT)Group Theory (math.GR)Surface (topology)Mapping class groupCombinatoricsMathematics - Geometric Topology57M99Genus (mathematics)FOS: MathematicsMathematics - Group TheoryFinite setMathematicsProceedings of the London Mathematical Society
researchProduct

Optimal rates of convergence for persistence diagrams in Topological Data Analysis

2013

Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be naturally considered in general statistical frameworks and persistence diagrams can be used as statistics with interesting convergence properties. Some numerical experiments are performed in various contexts to illustrate our results.

Computational Geometry (cs.CG)FOS: Computer and information sciences[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT][STAT.TH] Statistics [stat]/Statistics Theory [stat.TH]Topological Data analysis Persistent homology minimax convergence rates geometric complexes metric spacesGeometric Topology (math.GT)Mathematics - Statistics TheoryStatistics Theory (math.ST)[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG][STAT.TH]Statistics [stat]/Statistics Theory [stat.TH][INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG][ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH][ INFO.INFO-LG ] Computer Science [cs]/Machine Learning [cs.LG]Machine Learning (cs.LG)Computer Science - LearningMathematics - Geometric Topology[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG][INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG][MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: Mathematics[ INFO.INFO-CG ] Computer Science [cs]/Computational Geometry [cs.CG]Computer Science - Computational Geometry[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]
researchProduct

Conjugacy problem for braid groups and Garside groups

2003

We present a new algorithm to solve the conjugacy problem in Artin braid groups, which is faster than the one presented by Birman, Ko and Lee. This algorithm can be applied not only to braid groups, but to all Garside groups (which include finite type Artin groups and torus knot groups among others).

Conjugacy problemBraid group20F36Geometric topologyGarside groupsGroup Theory (math.GR)0102 computer and information sciencesAlgebraic topology01 natural sciencesTorus knotCombinatoricsMathematics - Geometric TopologyMathematics::Group TheoryMathematics::Quantum AlgebraFOS: MathematicsAlgebraic Topology (math.AT)Mathematics - Algebraic Topology0101 mathematics20F36; 20F10MathematicsSmall Gaussian groupsAlgebra and Number Theory010102 general mathematicsConjugacy problemBraid groupsGeometric Topology (math.GT)Braid theoryMathematics::Geometric TopologyArtin groups010201 computation theory & mathematicsArtin group20F10Mathematics - Group TheoryGroup theory
researchProduct

Three-page encoding and complexity theory for spatial graphs

2004

We construct a series of finitely presented semigroups. The centers of these semigroups encode uniquely up to rigid ambient isotopy in 3-space all non-oriented spatial graphs. This encoding is obtained by using three-page embeddings of graphs into the product of the line with the cone on three points. By exploiting three-page embeddings we introduce the notion of the three-page complexity for spatial graphs. This complexity satisfies the properties of finiteness and additivity under natural operations.

Discrete mathematics[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Algebra and Number TheoryDegree (graph theory)Semigroup010102 general mathematicsGeometric topologyGeometric Topology (math.GT)01 natural sciences57M25 57M15 57M05Combinatorics010104 statistics & probabilityMathematics - Geometric TopologyCone (topology)Additive functionEncoding (memory)[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: Mathematics0101 mathematicsUnit (ring theory)Ambient isotopyMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]MathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

Topological Logics with Connectedness over Euclidean Spaces

2013

We consider the quantifier-free languages, Bc and Bc °, obtained by augmenting the signature of Boolean algebras with a unary predicate representing, respectively, the property of being connected, and the property of having a connected interior. These languages are interpreted over the regular closed sets of R n ( n ≥ 2) and, additionally, over the regular closed semilinear sets of R n . The resulting logics are examples of formalisms that have recently been proposed in the Artificial Intelligence literature under the rubric Qualitative Spatial Reasoning. We prove that the satisfiability problem for Bc is undecidable over the regular closed semilinear sets in all dimensions greater than 1,…

FOS: Computer and information sciencesComputer Science - Logic in Computer ScienceGeneral Computer ScienceUnary operationClosed setLogicSocial connectedness0102 computer and information sciencesTopological space68T30 (Primary) 03D15 68Q17 (Secondary)Topology01 natural sciencesTheoretical Computer ScienceMathematics - Geometric TopologyEuclidean geometryFOS: Mathematics0101 mathematicsMathematicsI.2.4; F.4.3; F.2.2Discrete mathematicsI.2.4010102 general mathematicsGeometric Topology (math.GT)Predicate (mathematical logic)Undecidable problemLogic in Computer Science (cs.LO)Computational Mathematics010201 computation theory & mathematicsF.4.3F.2.2Boolean satisfiability problemACM Transactions of Computational Logic
researchProduct

SURFACE SUBGROUPS OF RIGHT-ANGLED ARTIN GROUPS

2007

We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group $A(K)$ has such a subgroup if its defining graph $K$ contains an $n$-hole (i.e. an induced cycle of length $n$) with $n\geq 5$. We construct another eight "forbidden" graphs and show that every graph $K$ on $\le 8$ vertices either contains one of our examples, or contains a hole of length $\ge 5$, or has the property that $A(K)$ does not contain hyperbolic closed surface subgroups. We also provide several sufficient conditions for a \RAAG to contain no hyperbolic surface subgroups. We prove that for one of these "forbidden" subgraphs $P_2(6)$, …

General MathematicsGeometric Topology (math.GT)Group Theory (math.GR)Van Kampen diagramRelatively hyperbolic groupConductorCombinatoricsMathematics - Geometric TopologyMathematics::Group TheoryArtin L-functionFOS: MathematicsArtin groupArtin reciprocity lawCharacteristic subgroupAbelian groupMathematics - Group TheoryMathematicsInternational Journal of Algebra and Computation
researchProduct

Mappings of Finite Distortion : Compactness of the Branch Set

2017

We show that an entire branched cover of finite distortion cannot have a compact branch set if its distortion satisfies a certain asymptotic growth condition. We furthermore show that this bound is strict by constructing an entire, continuous, open and discrete mapping of finite distortion which is piecewise smooth, has a branch set homeomorphic to an (n - 2)-dimensional torus and distortion arbitrarily close to the asymptotic bound. Peer reviewed

General Mathematicsbranch setsCOVERS01 natural sciencesfunktioteoriaSet (abstract data type)Mathematics - Geometric TopologyDimension (vector space)DistortionFOS: Mathematics111 Mathematicsfinite distortionComplex Variables (math.CV)topologia0101 mathematicsDIMENSIONMathematicsPartial differential equationMathematics - Complex Variables010102 general mathematicsMathematical analysisGeometric Topology (math.GT)TorusCompact spaceCover (topology)57M12 30C65PiecewiseLIGHT OPEN MAPSmonistotAnalysis
researchProduct

The HOMFLY-PT polynomials of sublinks and the Yokonuma–Hecke algebras

2016

We describe completely the link invariants constructed using Markov traces on the Yokonuma-Hecke algebras in terms of the linking matrix and the HOMFLYPT polynomials of sublinks.

MSC: Primary 57M27: Invariants of knots and 3-manifolds Secondary 20C08: Hecke algebras and their representations 20F36: Braid groups; Artin groups 57M25: Knots and links in $S^3$Pure mathematicsMarkov chainGeneral Mathematics010102 general mathematicsYokonuma-Hecke algebrasGeometric Topology (math.GT)Linking numbers01 natural sciencesMathematics::Geometric TopologyMatrix (mathematics)Mathematics - Geometric TopologyMarkov tracesMathematics::Quantum Algebra[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)010307 mathematical physics0101 mathematicsRepresentation Theory (math.RT)Link (knot theory)Mathematics - Representation TheoryMathematics
researchProduct