Search results for "Mathematics - Geometric Topology"
showing 10 items of 55 documents
The proof of Birman’s conjecture on singular braid monoids
2003
Let B_n be the Artin braid group on n strings with standard generators sigma_1, ..., sigma_{n-1}, and let SB_n be the singular braid monoid with generators sigma_1^{+-1}, ..., sigma_{n-1}^{+-1}, tau_1, ..., tau_{n-1}. The desingularization map is the multiplicative homomorphism eta: SB_n --> Z[B_n] defined by eta(sigma_i^{+-1}) =_i^{+-1} and eta(tau_i) = sigma_i - sigma_i^{-1}, for 1 <= i <= n-1. The purpose of the present paper is to prove Birman's conjecture, namely, that the desingularization map eta is injective.
Spectral sequence associated with a symplectic manifold
2006
A method of computation of its terms is presented together with some stabilization results. As an application a characterization of symplectic harmonic manifolds is given and a relationship with the C-spectral sequence is indicated.
Roots in the mapping class groups
2006
The purpose of this paper is the study of the roots in the mapping class groups. Let $\Sigma$ be a compact oriented surface, possibly with boundary, let $\PP$ be a finite set of punctures in the interior of $\Sigma$, and let $\MM (\Sigma, \PP)$ denote the mapping class group of $(\Sigma, \PP)$. We prove that, if $\Sigma$ is of genus 0, then each $f \in \MM (\Sigma)$ has at most one $m$-root for all $m \ge 1$. We prove that, if $\Sigma$ is of genus 1 and has non-empty boundary, then each $f \in \MM (\Sigma)$ has at most one $m$-root up to conjugation for all $m \ge 1$. We prove that, however, if $\Sigma$ is of genus $\ge 2$, then there exist $f,g \in \MM (\Sigma, \PP)$ such that $f^2=g^2$, $…
Optimal rates of convergence for persistence diagrams in Topological Data Analysis
2013
Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be naturally considered in general statistical frameworks and persistence diagrams can be used as statistics with interesting convergence properties. Some numerical experiments are performed in various contexts to illustrate our results.
Conjugacy problem for braid groups and Garside groups
2003
We present a new algorithm to solve the conjugacy problem in Artin braid groups, which is faster than the one presented by Birman, Ko and Lee. This algorithm can be applied not only to braid groups, but to all Garside groups (which include finite type Artin groups and torus knot groups among others).
Three-page encoding and complexity theory for spatial graphs
2004
We construct a series of finitely presented semigroups. The centers of these semigroups encode uniquely up to rigid ambient isotopy in 3-space all non-oriented spatial graphs. This encoding is obtained by using three-page embeddings of graphs into the product of the line with the cone on three points. By exploiting three-page embeddings we introduce the notion of the three-page complexity for spatial graphs. This complexity satisfies the properties of finiteness and additivity under natural operations.
Topological Logics with Connectedness over Euclidean Spaces
2013
We consider the quantifier-free languages, Bc and Bc °, obtained by augmenting the signature of Boolean algebras with a unary predicate representing, respectively, the property of being connected, and the property of having a connected interior. These languages are interpreted over the regular closed sets of R n ( n ≥ 2) and, additionally, over the regular closed semilinear sets of R n . The resulting logics are examples of formalisms that have recently been proposed in the Artificial Intelligence literature under the rubric Qualitative Spatial Reasoning. We prove that the satisfiability problem for Bc is undecidable over the regular closed semilinear sets in all dimensions greater than 1,…
SURFACE SUBGROUPS OF RIGHT-ANGLED ARTIN GROUPS
2007
We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group $A(K)$ has such a subgroup if its defining graph $K$ contains an $n$-hole (i.e. an induced cycle of length $n$) with $n\geq 5$. We construct another eight "forbidden" graphs and show that every graph $K$ on $\le 8$ vertices either contains one of our examples, or contains a hole of length $\ge 5$, or has the property that $A(K)$ does not contain hyperbolic closed surface subgroups. We also provide several sufficient conditions for a \RAAG to contain no hyperbolic surface subgroups. We prove that for one of these "forbidden" subgraphs $P_2(6)$, …
Mappings of Finite Distortion : Compactness of the Branch Set
2017
We show that an entire branched cover of finite distortion cannot have a compact branch set if its distortion satisfies a certain asymptotic growth condition. We furthermore show that this bound is strict by constructing an entire, continuous, open and discrete mapping of finite distortion which is piecewise smooth, has a branch set homeomorphic to an (n - 2)-dimensional torus and distortion arbitrarily close to the asymptotic bound. Peer reviewed
The HOMFLY-PT polynomials of sublinks and the Yokonuma–Hecke algebras
2016
We describe completely the link invariants constructed using Markov traces on the Yokonuma-Hecke algebras in terms of the linking matrix and the HOMFLYPT polynomials of sublinks.